MCPIP1 mediates silica-induced cell migration in human pulmonary fibroblasts.

نویسندگان

  • Haijun Liu
  • Xiaoniu Dai
  • Yusi Cheng
  • Shencun Fang
  • Yingming Zhang
  • Xingang Wang
  • Wei Zhang
  • Hong Liao
  • Honghong Yao
  • Jie Chao
چکیده

Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2). Phagocytosis of SiO2 in the lungs initiates an inflammatory cascade that results in fibroblast proliferation and migration followed by fibrosis. According to previous data from our laboratory, monocyte chemotactic protein-1 (MCP-1) plays a critical role in fibroblast proliferation and migration in conventional two-dimensional (2D) monolayer cultures. The present study aimed to explore the downstream cascade of MCP-1 in both 2D and three-dimensional (3D) cell culture models of silicosis. Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following: 1) SiO2 treatment induces expression of MCP-1-induced protein (MCPIP1) in a time- and dose-dependent manner in both 2D and 3D cultures; 2) the MAPK and phosphatidylinositol-3-kinase (PI3K)/Akt pathways are involved in SiO2-induced MCPIP1 expression; and 3) MCPIP1 induction mediates the SiO2-induced increase in cell migration in both 2D and 3D cultures. The effect of MCP-1 in silicosis occurs mainly through MCPIP1, which, in turn, mediates the observed SiO2-induced increase in pulmonary fibroblast migration. However, the time frame for MCPIP1 induction differed between 2D and 3D cultures, indicating that, compared with conventional 2D cell culture systems, 3D culture may be useful for analyses of fibroblast physiology under conditions that more closely resemble in vivo environments. Our study determined the link between fibroblast-derived MCPIP1 and SiO2-induced cell migration, and this finding provides novel evidence of the potential of MCPIP1 in the development of novel therapeutic strategies for silicosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MCPIP 1 mediates silica - induced cell migration in human pulmonary 1 fibroblasts

MCPIP1 mediates silica-induced cell migration in human pulmonary 1 fibroblasts 2 Running Title: MCPIP1 induced pulmonary fibroblast migration 3 Haijun Liu, Xiaoniu Dai, Yusi Cheng, Shencun Fang, Yingming Zhang, 4 Xingang Wang, Wei Zhang, Hong Liao, Honghong Yao, Jie Chao 5 6 Department of Physiology, School of Medicine, Southeast University, Nanjing, 7 Jiangsu, 210009, China 8 Neurobiology Labo...

متن کامل

Role of MCPIP1 in the Endothelial-Mesenchymal Transition Induced by Silica.

BACKGROUND Silicosis is characterized by the accumulation of fibroblasts and the excessive deposition of extracellular matrix. Fibroblast generation via endothelial-mesenchymal transition (EndMT) is one process responsible for this accumulation of fibroblasts. However, the mechanisms underlying EndMT remain unknown. METHODS Human umbilical vein endothelial cells (HUVECs) were exposed to SiO2 ...

متن کامل

MCPIP1 regulates fibroblast migration in 3D collagen matrices downstream of MAP kinases and NF-κB

The fibroblast-populated three-dimensional (3-D) collagen matrix has been used to model matrix contraction, cell motility, and general fibroblast biology. MCPIP1 (monocyte chemotactic protein-induced protein 1) has been shown to regulate inflammation, angiogenesis, and cellular motility. In the present study, we demonstrated induction of MCPIP1 in human fibroblasts embedded in the stress-releas...

متن کامل

p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis

Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of ev...

متن کامل

The Role of Human Adult Peripheral and Umbilical Cord Blood Platelet-Rich Plasma on Proliferation and Migration of Human Skin Fibroblasts

BACKGROUND Wound healing is a complex and dynamic process following damage in tissue structures. Due to extensive skin damage caused by burn injuries, this study determined the role of human adult peripheral and umbilical cord blood platelet-rich plasma on proliferation and migration in human skin fibroblasts. METHODS Platelet-rich plasma (5, 10, 15, 20 and 50% PRP) from human umbilica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 310 2  شماره 

صفحات  -

تاریخ انتشار 2016